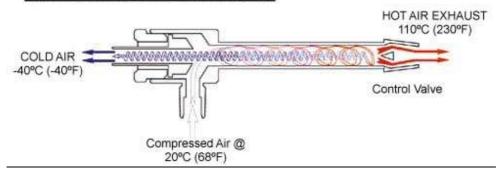
WIRBELROHRE AUS EDELSTAHL

Wirbelrohre sind Vorichtungen, die mit Standarddruckluft arbeiten. Die Druckluft tritt in das Wirbelrohr ein und wird in zwei Ströme getrennt. Ein Kaltluft- und ein Heißluftstrom, ohne bewegliche Teile.

Wirbelrohre haben ein Ventil am warmen Ende, das die Luftmenge und die Temperatur vom kalten Ende regeln.

Im Inneren befindet sich ein austauschbarer Generator, der die Temperatur am heißen Ende und am kalten Ende regelt. Es gibt verschiedene Generatoren für verschiedene Druckluftleistungen. Es gibt auch zwei Basistypen von Generatoren, einen um extrem hohe Temperaturen zu erzeugen (Höchsttemperatur im Ausgang, genannt C Generator) und den zweiten um höchste Kühlungstemperatur zu erzeugen (Höchstkühlung im Ausgang, genannt H Generator).


FRIGID-X Produkte, sind die Besten, weil

FRIGID-X Wirbelrohre sind aus Edelstahl mit Generator und Ventil aus Messing abgedichtet mit Viton "O" Ring und sind somit für ein sehr breites Einsatzfeld geeignet. Andere haben Plastikgeneratoren und Standard Buna-N "O"-Ring und verrechnen extra für Messing und Viton. Das einzige Design und die Materialqualität garantieren jahrelang einwartungsfreien Einsatz.

Vorteile	Einsätze			
keine beweglichen Teile, sicher und	kühlt elektronische und elektrische			
wartungsfrei.	Paneele			
keine Kühlmittel notwendig	Kühlt Maschinenvorgänge/Werkzeuge			
kompakt und leicht	Kühlt CCTV Kameras			
kostengünstig	regelt heiße geschmolzene Kleber			
wartungsfreie Einheiten	kühlt geschweißte Teile			
sofortige kalte Luft in Kabinen	kühlt Gasmuster			
keine Funken oder Explosionsgefahr	kühlt Heizdichtungen			
austauschbare Generatoren	Kühlung von Kabinen			

DAS WIRBELROHRPRINZIP

The Principle of a Vortex Tube

Druckluft, typisch zwischen 80-100 PSIG kommt seitlich durch den Generator in das Rohr und wird aufgewirbelt. Dieser Luftstrom wirbelt sich durch zum heißen Ende, wo ein Teil durch das Regelventil ausscheidet. Der Rest, die verwirbelte Luft, kommt zurück bis zur Mitte des Rohrs. Der innere ver-wirbelte Strom gibt eine Hitze in Richtung äußeren Strom (kommt am heißen Ende als Heißluft raus) und scheidet am kalten Ende als kalte Luft aus. Die eintretende Luft ist praktisch in kalte und warme Luft geteilt ohne Einsatz von beweglichen Teilen.

Festlegen vom Durchfluss und Temperatur in einem Wirbelrohr

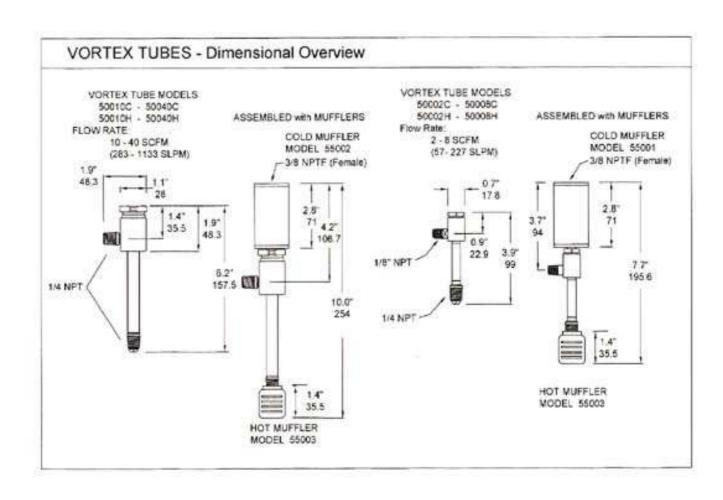
Durch das Regeln desventils am heißen Ausgang, wird die Durchflussmenge und die Temperatur am kalten Ende festgelegt. Je mehr Luft am warmen Ende austritt, desto kleiner wird die Temperatur und der Luftstrom am kalten Ende. Wenn man dasventil am warmen Ende schließt, dann vergrößert man den Luftstrom und die kalte Temperatur am kalten Ende. Die Prozentzahl der gesamten Luftzufuhr in das Wirbelrohr, das am kalten Ende austritt ist der "Kaltanteil". Ein "Kaltanteil" von 60% bis 80% produziert die optimale Kühlung, oder BTU/Std. (Kcal/h). Die untere Tabelle zeigt den Temperaturaufstieg am warmen Ende und den Temperaturabfall am kalten Ende eines Wirbelrohrs bei verschiedenen Eingangsdrücken und den festgelegten "Kaltanteil".

Die meisten Industrieeinsätze, wie Kühlung elektrischer Panele , Teilekühlung, Werkzeugkühlung, brauchen die Höchstkühlung und nehmen dafür die FRIGID-X 5000H Serie. Einsätze, die extreme Kühlug brauchen, wie z.B. Kühlung von Labormustern, Testen von Schalteinheiten, nehmen die FRIGID-X 5000C Serie. Auf jeden Fall gibt es Auspuffe für beide Enden falls benötigt.

SPEZIFIKATIONEN

Modell	SCFM bei 100	LIT/Min. bei 7			
Nr.	PSIG	bar	BTU/Hr.	KCAL/H	Größe
	Eingang	Eingang	bei 100 PSIG	bei 7 bar	
50002H	2	57	145	37	SMALL
50004H	4	113	290	73	SMALL
50008H	8	227	580	146	SMALL
50010H	10	283	730	184	MEDIUM
50015H	15	425	1100	277	MEDIUM
50025H	25	708	1800	454	MEDIUM
50030H	30	850	2100	529	MEDIUM
50040H	40	1133	2900	731	MEDIUM

Modell Nr.	SCFM bei 100 PSIG	LIT/Min. bei 7 bar		Größe
	Eingang	Eingang	FÜR KALTE TEMPERATUREN	
50002C	2	57		SMALL
50004C	4	113		SMALL
50008C	8	227		SMALL
50010C	10	283		MEDIUM
50015C	15	425		MEDIUM
50025C	25	708		MEDIUM
50030C	30	850		MEDIUM
50040C	40	1133		MEDIUM


Der ungefähre Temperaturabfall (und Temperatursteigung) von der Lufteingangstemperatur , die durch das Wirbelrohr produziert werden bei verschiedenen Festlegungen von "Kaltanteil". Voraussetzung ist ein konstanter Druck und eine konstante Temperatur im Eingang.

Temperaturabfall der kalten Luft in F in blau Temperatursteigung der warmen Luft in F in rot

Lufteingang	Kaltanteil %						
PSIG	20	30	40	50	60	70	80
20				51	44		28
	15	25	36	50	64	83	107
40				73			
	21	35	52	71	92	117	147
60	104	100		84			
	24	40	59	80	104	132	166
80	115	110	102	92			
	25	43	63	86	113	143	180
100	123	118	110	100		71	54
	26	45	67	90	119	151	191
120	129	124	116	104	91	74	
	26	46	69	94	123	156	195

Temperaturabfall der kalten Luft in $\mathbb C$ in blau Temperatursteigung der warmen Luft in $\mathbb C$ in rot

Lufteingang	Kaltanteil %						
bar	20	30	40	50	60	70	80
1	17	16	13	10	7	2	-1
	-10	-4	2	10	18	28	42
3	31	29	27	23	17	11	3
	-6	2	11	22	33	47	64
4	40		34	29	23	16	8
	-2	4	15	27	40	56	74
6	46	43			27	19	10
	-4	6	17	30	45	62	82
7	51	48	43			22	12
	-4	7	19	32	48	66	88
8	54	51	47	40		24	13
	-4	8	20	34	51	69	91

